
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

Comparative Analysis of Search Time Complexity 

Using Linear, Binary, and Hash Methods on GBK-

Encoded Mandarin Characters 

Raynard Fausta - 13524052 

Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

E-mail: raynrdfaustasmlone@gmail.com , 13524052@std.stei.itb.ac.id   

 

 
Abstract—This article compares and analyzes three search 

methods—linear search, binary search, and hash search—based 

on its time complexity when implemented to Mandarin characters 

encoded with GBK. An array of 1,000 Mandarin characters is used 

as the dataset for the search algorithms. Analysis of time 

complexity is done based on the search method implemented in the 

algorithms. Every algorithm is implemented in Python language 

to ensure fair condition for comparative analysis. Time 

measurements are collected with high-precision timers to assess 

the execution performance. The analysis results confirm the 

theoretical claims: linear search demonstrates O(n) complexity, 

binary search O(log n) starting from the second search, and hash 

search O(1). Although, actual execution time may vary from the 

theoretical claims as shown in the testing. This article offers insight 

for the development of Mandarin-to-other-languages dictionary 

software. 

Keywords—Mandarin; time complexity; search algorithm; 

linear search; hash search; binary search; encoding; GBK  

I.  INTRODUCTION 

Mandarin is a very distinct language compared to other 
world languages which are mostly alphabetical languages. 
Mandarin is a logographic language, in which symbols are used 
to represent the meaning of the words entirely and have no direct 
correlation with the words’ pronunciation.  

As China is rising to be world’s leading economy and 
technological leader, the use of Mandarin has been increasing 
year by year. In fact, according to research conducted by 
International Center for Language Studies in August 2024, 
Mandarin was ranked second as the world’s most spoken 
language after English. Mandarin was spoken by 199 million 
people as a foreign language in 84 countries. 

As the world is experiencing enormous effects of 
globalization, languages need to be encoded and digitally 
represented in order for them to be transferred across computers. 
The very first encoding method is the ASCII (American 
Standard Code for Information Interchange) method which uses 
binary code to represent a single character. ASCII is effective to 
encode most of world’s languages as they are alphabetical. 
However, Mandarin is not an alphabetical language, therefore 
the ASCII method fails to encode Mandarin character. 

In 1980, as an effort for the Chinese to join the globalization 

trend, they developed the GB2312(国家标准  2312/Guojia 

Biaozhun) which could encode 6763 Mandarin character(汉字).  

 However, GB2312 did not manage to encode some rare 

characters from Chinese names or classic Mandarin script. 

Therefore, the Chinese developed the GBK (国家标准扩展/ 

Guojia Biaozhun Kuozhan). GBK then occupied critical role in 

Mandarin encoding development, addressing the limitations in 

the previous GB2312 standard and facilitating the transition to 

Unicode-compatible GB18030. 
 As Mandarin is accelerating to become the world’s most 
used language, the most efficient search algorithm for Mandarin 
character is needed to enhance the speed of data processing and 
transferring. Therefore, the author is interested in conducting 
comparative analysis of search time complexity using linear, 
binary, and hash methods on GBK-encoded Mandarin 
characters.  

II. THEORETICAL BACKGROUND  

A. Algorithm 

Algorithms are sets of procedure or instruction used to solve 
a problem or to perform a computation. 

Algorithms have several advantages such as consistent 
results for every repetition, scalability, which algorithms can 
handle large data and solve complex problems, automation, and 
standardization, which algorithms can be standardized and 
shared among people.  

A good algorithm must be correct for every circumstance 
and efficient in solving a problem. Efficiency of algorithms can 
be measured from the usage of memory space or time taken to 
solve a problem. An efficient algorithm must solve a problem 
using as little memory space as possible and complete it in the 
shortest possible time. Both memory space and time requirement 
to solve a problem are measured from the size of the input. 

B. Algorithm Complexity 

Algorithm Complexity is the amount of memory space and 
time to solve a problem. There are two kinds of algorithms 

mailto:raynrdfaustasmlone@gmail.com
mailto:13524052@std.stei.itb.ac.id


Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

complexity, time complexity and space complexity. The 
complexity of an algorithm is represented by a function which 
describes the algorithm’s efficiency based on the size of data to 
be processed by the algorithm. 

C. Time Complexity 

Time Complexity is the amount of time needed by the 
algorithm to solve a problem. This amount of time is not 
measured based on the execution time because different 
computers might take different time for an operation, as different 
computers use different machine languages. Different compilers 
also produce different machine languages. 

 Time Complexity is measured by calculating the amount of 
iteration and operations executed by the algorithms. Not all 
operations are calculated in time complexity.  

Some of the typical operations which are calculated are: 

➢ Write and Read Operation 

Example: input(a), print(a) in Python 

➢ Arithmetic Operation 

Example: n is a+b in Prolog 
➢ Assignment Operation 

Example: int a=0; in C language 
➢ Comparison Operation 

Example: x>y in most programming languages  
➢ Array Accessing Operation 

Example: n=a[0] in Python 
➢ Function or Procedure Calling Operation 

Example: fungsikuadrat(2), sort(array) in C 
language 

➢ Etc. 

 Some typical algorithms contain typical operations such as: 

➢ Searching algorithm involves comparison 
operations 

➢ Sorting algorithms involves comparison and swap 
operations 

➢ Multiplication of matrixes algorithm involves 
arithmetic operations 

➢ Value calculation of a polynomial involves 
arithmetic operations 

 There are three types of time complexities: 

• Tmax(n): time complexity for the worst case which 
algorithms perform the maximum amount of work 
 Tmax(n)=n 

• Tmin(N): time complexity for the best case which 
algorithms perform the minimum amount of work 
 Tmin(n)=1 

• Taverage(N): time complexity for the average case  

 Taverage(n)=
1+2+3+4+..+𝑛

𝑛
=

1

2
∗𝑛∗(𝑛+1)

𝑛
=

𝑛+1

2
  

 or 

 Taverage(n)= ∑ 𝑇𝑗
𝑛
𝑗=1 𝑃(𝑎[𝑗] = 𝑥) = ∑ 𝑇𝑗

𝑛
𝑗=1

1

𝑛
 

  =
1

𝑛
∑ 𝑇𝑗

𝑛
𝑗=1 =

1

𝑛
∑ 𝑗𝑛

𝑗=1  

  =
1

𝑛
(

𝑛∗(𝑛+1)

2
) =

𝑛+1

2
  

The performance of algorithms can only be determined when 
the algorithm input size is large. Hence, asymptotic time 
complexity, an algorithmic time complexity notation used to 
describe the performance of algorithms for large input size, is 
needed. 

There are 3 kinds of asymptotic time complexity: 
1. Big-O Notation (Big-O) 
 Big-O is used to compare several algorithms for a 
specific problem and determine the best algorithm based on 
time complexity. 

 
f(n) is the upper bound of T(n) for large input size 

   

  There are unlimited combinations of c and n value that 
satisfy T(n) ≤ c*f(n), however only one pair is needed to 
satisfy the Big-O definition. 
  1, n, 𝑛2, 𝑛3, . . , 𝑙𝑜𝑔 𝑛, 𝑛 𝑙𝑜𝑔 𝑛, 2𝑛, 𝑛! are some typical 
functions for f(n). 

  Hence, finding the term with the greatest degree is 
sufficient to determine the Big-O notation. 

 Generalization from the first Theorem: 
1. Exponential dominates every polynomial ( 𝑦𝑛 >

𝑛𝑝, 𝑦 > 1 
2. Polynomial dominates ln(n) (𝑛𝑝 > 𝑙𝑛 𝑛) 

Figure 2. Comparison of Memory Space Usage Based on 

Input Dimension 

Figure 1. Comparison of Computation Time Based on 
Input Dimension [Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdi

s/2024-2025/25-Kompleksitas-Algoritma-Bagian1-

2024.pdf]  

Figure 3. Illustration for Big-O Definition [Source 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-

Algoritma-Bagian2-2024.pdf]  

Definition: 

A function T(n) is O(f(n)), which f(n) represents the 

asymptotic upper bound of T(n), if for some constant c and n: 

 

T(n) ≤ c*f(n), for n≥n0 

 

Theorem: 

If T(n)= 𝑎𝑚𝑛𝑚 + 𝑎𝑚−1𝑛𝑚−1+. . +𝑎1𝑛 + 𝑎0 is a polynomial 

with degree ≤ m, then T(n)=O(𝑛𝑚) 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf


Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

3. All logarithmic functions grow at the same rate (a 
log(n) = b log(n)) 

4. n log n grows at faster rate than n, but slower than n2  

   
 

Algorithm Group Type 

O(1) Constant 

O(log n) Logarithmic 

O(n) Linear 

O(n log n) Logarithmic Linear 

O(n2) Quadratic 

O(n3) Cubic 

O(2n) Exponential 

O(n!) Factorial 
Table 1. Grouping of algorithms based on Big-O Notation [Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf] 

   

 The spectrum of algorithm time complexity, in order: 

1 < log n < n log n < n2 < n3 < … < 2n < n! 
 

 
 

➢ O(1) 
The execution time of algorithm is constant and 

does not depend on input size. It is found in algorithms 
whose instructions are only executed once. 

Example: 
 
 
 
 
 
 

➢ O(log n) 
Algorithm with slower grow rate than n. It is found 

in algorithms that transform complex problems into 
several smaller subproblems with equal size. 

Example: 

➢ O(n) 
Algorithm whose execution time grow linearly with 

respect to input size. Each input element undergoes a 
similar process. 

Example: 

➢ O(n log n) 
Algorithm that divides complex problems into 

smaller subproblems and solves them independently 
and combining all the subproblems’ solutions. It is 
found in algorithms that solve a problem with divide 
and conquer.  

Example: 

➢ O(n2) 

1 log n n n log n n2 n3 2n n! 

1 0 1 0 1 1 2 1 

1 1 2 2 4 8 4 2 

1 2 4 8 16 64 16 24 

1 3 8 24 64 512 256 362880 

1 4 16 64 256 4096 65536 20922789888000 

1 5 32 160 1024 32768 4294967296 263130836933693530167218012160000000 

Table 2. Value of Each Complexity Function with Varying n [Source: 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf] 

Theorem: 

If T1(n)=O(f(n)) and T2(n)=O(g(n)), then: 

a. T1(n) + T2(n) = O(f(n)) + O(g(n)) = O(max(f(n), g(n)) 

b. T1(n) * T2(n) = O(f(n)) * O(g(n)) = O(f(n) * g(n)) 

c. O(c*f(n)) = O(f(n)), c is constant 

d. f(n) = O(f(n)) 

 

Polynomial algorithm (good) Exponential algorithm (bad) 

Figure 4. Big-O Time Complexity Chart [Source: 

https://miro.medium.com/v2/resize:fit:678/0*sHLx8GgoVye4Ku2c.png]  

Figure 6. Example of Program with O(log n) Complexity [Source: 

https://miro.medium.com/v2/resize:fit:868/1*WbGV7i6CyOQ5jt6hRnK2Zw.png]  

Figure 7. Example of Program with O(n) Complexity [Source: 

https://res.cloudinary.com/practicaldev/image/fetch/s--TFKIRFBW--

/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https://dev-to-

uploads.s3.amazonaws.com/i/znn2e6wn2u9zkbiexflg.png]  

Figure 8. Example of Program with O(n log n) Complexity [Source: 

https://media2.dev.to/dynamic/image/width=800%2Cheight=%2Cfit=scale-

down%2Cgravity=auto%2Cformat=auto/https%3A%2F%2Fdev-to-

uploads.s3.amazonaws.com%2Fi%2Fzkwfjqjyeqr8ezewkk34.png]  

Figure 5. Example of Program with O(1) Complexity 

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://miro.medium.com/v2/resize:fit:678/0*sHLx8GgoVye4Ku2c.png
https://miro.medium.com/v2/resize:fit:868/1*WbGV7i6CyOQ5jt6hRnK2Zw.png
https://res.cloudinary.com/practicaldev/image/fetch/s--TFKIRFBW--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https:/dev-to-uploads.s3.amazonaws.com/i/znn2e6wn2u9zkbiexflg.png
https://res.cloudinary.com/practicaldev/image/fetch/s--TFKIRFBW--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https:/dev-to-uploads.s3.amazonaws.com/i/znn2e6wn2u9zkbiexflg.png
https://res.cloudinary.com/practicaldev/image/fetch/s--TFKIRFBW--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https:/dev-to-uploads.s3.amazonaws.com/i/znn2e6wn2u9zkbiexflg.png
https://media2.dev.to/dynamic/image/width=800%2Cheight=%2Cfit=scale-down%2Cgravity=auto%2Cformat=auto/https%3A%2F%2Fdev-to-uploads.s3.amazonaws.com%2Fi%2Fzkwfjqjyeqr8ezewkk34.png
https://media2.dev.to/dynamic/image/width=800%2Cheight=%2Cfit=scale-down%2Cgravity=auto%2Cformat=auto/https%3A%2F%2Fdev-to-uploads.s3.amazonaws.com%2Fi%2Fzkwfjqjyeqr8ezewkk34.png
https://media2.dev.to/dynamic/image/width=800%2Cheight=%2Cfit=scale-down%2Cgravity=auto%2Cformat=auto/https%3A%2F%2Fdev-to-uploads.s3.amazonaws.com%2Fi%2Fzkwfjqjyeqr8ezewkk34.png


Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

Algorithm whose execution time grows 
quadratically with respect to input size. It is found in 
algorithms that process input elements in 2 nested loops. 

Example: 

 
➢ O(n3) 

Algorithm that processes input elements in 3 nested 
loops. 

Example: 

 
➢ O(2n) 

Algorithms that are categorized as brute-force 
method. It involves trials and errors in solving the 
problem. 

Example: 

➢ O(n!) 
Algorithm that processes each input element and 

links it with n-1 other elements. 
Example: 

  

2. Big-Omega Notation (Big-) 

3. Big-Theta Notation (Big- ) 

If T(n) = (h(n)), T(n)’s order is h(n). 

D. Mandarin As Logographic Language 

Mandarin characters (汉字) use strokes(笔画), which must 

be written in specific order(笔顺), to represent the meaning of 

a word.  

  

There are six basics of how a Mandarin character is 

written: 

1. 象形(Pictographs) 

Mandarin characters are stylized or simple 

representations of the object. 

Figure 9. Example of Program with O(n2) Complexity 

[Source: 

https://miro.medium.com/v2/resize:fit:609/1*1pEjE1Bau34

XnwOWbbwkog.png] 

Figure 10. Example of Program with O(n3) Complexity [Source: 

https://shivathudi.github.io/assets/square-multiply.png]  

Figure 11. Example of Program with O(2n) Complexity [Source: 

https://allinpython.com/power-set-program-in-python/] 

Figure 12. Example of Program with O(n!) Complexity [Source: 

https://onlinelibrary.wiley.com/cms/asset/2ea50bb4-a37f-4f45-bab0-

04265338b894/net21864-gra-0002.png] 

Definition: 

A function T(n) is (g(n)), which g(n) represents the 

asymptotic lower bound of T(n), if for some constant c and n: 

 

T(n) ≥ c*g(n), for n≥n0 

 

Definition: 

A function T(n) is (h(n)), means h(n) represents both 

asymptotic upper and lower bound for T(n), if: 

 

T(n) = O(h(n)) and T(n) = (h(n)). 

 

Figure 13. Table of 32 Mandarin Basic Strokes（笔画） [Source: 

https://www.hypy.com.cn/upfile/image/20210629/20210629174069056905.jpg] 

Figure 14. Stroke Order of a Mandarin Character [Source: 

https://bishun.ivtool.com/7738.htm] 

Theorem: 

If T(n)= 𝑎𝑚𝑛𝑚 + 𝑎𝑚−1𝑛𝑚−1+. . +𝑎1𝑛 + 𝑎0 is a polynomial 

with degree ≤ m, then T(n)’s order is 𝑛𝑚 

https://miro.medium.com/v2/resize:fit:609/1*1pEjE1Bau34XnwOWbbwkog.png
https://miro.medium.com/v2/resize:fit:609/1*1pEjE1Bau34XnwOWbbwkog.png
https://shivathudi.github.io/assets/square-multiply.png
https://allinpython.com/power-set-program-in-python/
https://onlinelibrary.wiley.com/cms/asset/2ea50bb4-a37f-4f45-bab0-04265338b894/net21864-gra-0002.png
https://onlinelibrary.wiley.com/cms/asset/2ea50bb4-a37f-4f45-bab0-04265338b894/net21864-gra-0002.png
https://www.hypy.com.cn/upfile/image/20210629/20210629174069056905.jpg
https://bishun.ivtool.com/7738.htm


Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

 

2. 指事(Ideographs)  

Mandarin characters represent abstract concepts that 

could be understood intuitively. 

Example:  

上-above, 中-middle, 一-one 

3. 会意(Compound Ideographs) 

Mandarin characters are combinations of two or more 

Mandarin characters. 

Example:  

家-house, 尖-tip, 休-rest 

4. 形声(Phonetic-Semantic Compounds) 

Mandarin characters are combinations of semantic 

(represents meaning) and phonetic components 

(represents pronunciation).  

Example: 

o 炮 pào – firecracker, cannon ((火-fire) 

semantic; (包- bāo) phonetic) 

o 晴 qíng – sunny, clear ((日-sun) semantic; (

青- qīng) phonetic) 

5. 转注(Transfer characters) 

Mandarin characters are modified to create new 

Mandarin characters. 

Example: 

考 kǎo (to verify) and 老 lǎo (old) 

6. 假借(Loan Characters) 

Mandarin characters appear in other characters, 

which are unrelated, but with similar pronunciation. 

Example: 

哥 gē (older brother) and 歌 gē (song) 

 

As Mandarin is not an alphabetical language, the 

organization of Mandarin characters in dictionary are 

based on 部首(radical) or 汉语拼音(Han Yu Pin Yin). 

 

汉语拼音(Han Yu Pin Yin) is used to pronounce 

each Mandarin characters. 

E. GBK Encoding 

GBK( 国 家 标 准 扩 展 / Guojia Biaozhun Kuozhan), 

established in 1985, is an expansion of GB2312 which was only 

able to encode 6763 Mandarin character. However, it failed to 

encode some rare characters from Chinese names or classic 

Mandarin script. Both GB2312 and GBK Encoding were built 

with ASCII as their foundation of development. GBK Encoding 

then maintained backward compatibility with GB2312 

encoding.  

GBK Encoding uses double byte encoding scheme with a 

code range from 8140 to FEFE, however any combinations with 

7F ending are not supported. GBK is able to encode 21,003 

Mandarin characters, an increase from the previous 6763 

characters. GBK encoding also covers 23940 code positions 

and supports CJK(Chinese, Japanese, Korean) Han characters. 

GBK Encoding has similar codepoints to ASCII and 

GB2312, as shown below: 

➢ 1-byte codes: {0x00-0x7F} 

Identical to ASCII codes 

Figure 15. Illustration of 象形(Pictographs) [Source: 

https://www.mandarinblueprint.com/blog/chinese-

characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%

20are%20not] 

Figure 16.  Illustration 指事(Ideographs) [Source: 

https://www.mandarinblueprint.com/blog/chinese-

characters/#:~:text=Chinese%20characters%20are%20not%20words,but%

20many%20others%20are%20not] 

Figure 17. Illustration of 会意(Compound Ideographs) 

[Source: https://www.mandarinblueprint.com/blog/chinese-

characters/#:~:text=Chinese%20characters%20are%20not%20words,

but%20many%20others%20are%20not] 

Figure 19. Mandarin Pin Yin Alphabet [Source: 

https://i.pinimg.com/736x/d2/81/3e/d2813ec3a9adf5a993b56b6d443e862f.jpg] 

Figure 18. Most Common Radical [Source: 

https://img.alicdn.com/imgextra/i2/859515618/O1CN01fqZT9O1rN5

nzGnycL_!!0-item_pic.jpg_q50s50.jpg] 

https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://i.pinimg.com/736x/d2/81/3e/d2813ec3a9adf5a993b56b6d443e862f.jpg
https://img.alicdn.com/imgextra/i2/859515618/O1CN01fqZT9O1rN5nzGnycL_!!0-item_pic.jpg_q50s50.jpg
https://img.alicdn.com/imgextra/i2/859515618/O1CN01fqZT9O1rN5nzGnycL_!!0-item_pic.jpg_q50s50.jpg


Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

➢ 2-byte codes: [0x81-0xFE][0x40-0x7E] and [0x81-

0xFE] [0x80-0xFE] 

GB2312 and additional characters 

In Ascii code, its most significant bit in the first byte is 0, 

system will then process only one byte. If the most significant 

bit in the first byte is 1, then it is Mandarin character. Therefore, 

determining whether a byte is ASCII or Mandarin is easy.  

The system will then process those 2 bytes by performing a 

lookup for (B1, B2) pair in the GBK mapping table.   

GBK Map consists of 5 levels. Each contains specific 

ranges for lead and trail bytes. 

Level Lead Byte 

Range 

Trail Byte 

Range 

Potential 

Code Point 

GBK/1 0xA1–0xA9 0xA1–0xFE 846 

GBK/2 0xB0–0xF7 0xA1–0xFE 6768 

GBK/3 0x81–0xA0 0x40–0xFE 6080 

GBK/4 0xAA–0xFE 0x40–0xFE, 

except 7F 

8160 

GBK/5 0xA8–0xA9 0x40–0xA0, 

except 7F 

192 

Table 3. Level in GBK Encoding [Source: Chinese Internal Code Specification (GBK) [Standard No. GBK n0278-1995]] 

III. METHOD 

A program in Python will be implemented to analyze search 

time complexity for GBK-Encoded Mandarin characters using 

linear, hash, and binary search. The program will have an array 

of 1,000 Mandarin characters as its pre-condition and has been 

encoded with GBK encoding. The program receives input from 

users in Mandarin characters and performs searches using 

linear, binary, and hash methods. The corresponding GBK 

encoding will be used as the key during the process. 

A time complexity analysis(theoretical) for the program is 

done to determine the Big-O notation for each method which 

will then be used to determine the most efficient search method. 

Program will also measure the execution time(empirical) for 

each search method to strengthen the hypothesis claim based on 

time complexity analysis.   

To further strengthen the understanding of Mandarin 

character searching, a simple Mandarin-English dictionary 

program for beginner speakers in Python language is 

implemented using the most efficient search method among the 

three methods. 

A. Dataset Preparation 

1,000 Simplified Mandarin characters(汉字) will be placed 

as elements of array in Python programming languages. There 

is no specific category for assigning those 1,000 characters into 

the array. Array assigning is assisted by ChatGPT to ensure 

correctness and efficiency.  

Source: https://www.chinesereadersguild.com/most-

frequent-chinese-characters-1-1000/ 

B. GBK Encoding 

Every Mandarin character will be encoded with GBK 

encoding by the Python program and stored accordingly in 

another array before proceeding to the search algorithm. 

Python has a built-in GBK encoding system. Mandarin 

characters contain 2 bytes in its GBK encoding. The first byte 

(high byte) is left-shifted 8 times and is operated with “or” 

operators with the second byte (low byte), in order for them to 

be combined as an integer. 

C. Search Method Implementations 

In every method, the same initial states occur in which 

every Mandarin character in initial array has been encoded 

with GBK encoding and results are stored in a separate array 

that only store GBK values before search is performed.  

The program will receive a Mandarin character as input. 

The program then encodes the input(target) into GBK value. 

➢ Linear Search 

Figure 20. GBK MAP for 0x9040-0x90FF [Source: 

https://www.khngai.com/chinese/charmap/tblgbk.php?page=1] 

Figure 21. GBK Encoding in Python 

https://www.chinesereadersguild.com/most-frequent-chinese-characters-1-1000/
https://www.chinesereadersguild.com/most-frequent-chinese-characters-1-1000/
https://www.khngai.com/chinese/charmap/tblgbk.php?page=1


Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

The program iterates every value in the array which 

stored the encoded GBK value. When the target value in 

GBK matches the one of the array element value, iterations 

will be stopped and “Found” message will be printed. 

Otherwise, there is no match for the target value after 

iterating every element and “Not Found” message will be 

printed. 

 

➢ Binary Search 

Array which stored GBK values will be sorted with 

merge sort algorithm ascendingly as array needs to be 

sorted before performing binary search. Left marker is 

assigned with the index 0 and right marker with array 

length-1. Search starts by comparing the value in the 

middle index with target value and the range is adjusted 

accordingly by shifting either the left marker or the right 

marker. Process repeats until the left marker is greater 

than right marker or target value has matched an array 

element.  

“Found” message is printed when there is a match for 

target value otherwise “Not Found” is printed. 

 

➢ Hash Search 

Program builds a hash table with GBK value as the key 

and value is assigned with True as dummy because 

program only checks the target input’s existence in the 

array. The program proceeds to look-up the target value in 

the hash table. 

“Found” message is printed when there is a match for 

target value in the hash table otherwise “Not Found” is 

printed. 

 

D. Search Time Measurement 

Time library is imported into the Python code to measure 

the search time. Start time marker recorded immediately before 

the search is about to start and the end time marker recorded 

immediately after the search has ended. 

In linear search method, the start time marker is placed 

before program goes into iteration and the end time marker is 

placed after the iterations stop. 

In binary search method, the start time marker is placed 

before the program sorts the array of GBK value and end time 

marker is placed after the iterations stop. 

In hash search method, the start time marker is placed before 

the programs build hash table and then end time marker is 

placed after the checking of target value in the hash table. 

The difference between the end time and start time is the 

program execution time. 

E. Empirical Testing 

 

 Each algorithm will be tested with the same 10 inputs 

sequentially and its execution time will be recorded and 

compared with other algorithms. Recorded time execution has 

the precision of 16 decimal places. 

IV. RESULTS AND DISCUSSION 

A. Algorithm Time Complexity Analysis (Theoretical) 

1. Linear Search 

Mandarin Character GBK Encoding Value 

试 0xCAD4 

印 0xD3A1 

快 0xBFEC 

蓝 0xC0B6 

火 0xBBF0 

茶 0xB2E8 

灯 0xB5C6 

巧 0xC7E3 

我 0xCED2 

爱 0XB0AE 

隆 0xC1FA 

Table 4. Inputs for Empirical Testing 

Figure 22. Linear Search Implementation in Python 

Figure 23. Binary Search with Merge Sort Implementation 

in Python 

Figure 24. Hash Search Implementation in Python 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

Linear search iterates each element of array until it 

finds the matching value for the target GBK value or 

reaches the end of the array. In each iteration, one 

comparison operation ( if ( value==target_val) ) is done to 

check whether the current element of array has matched the 

target GBK value. 

In its best case the minimum iteration needed is only 1 

iteration or Tmin(n)=1. In this case, the first element directly 

matches the target GBK value. 

In its worst case the maximum iteration needed is n 

iteration(s) which n is the number of elements in the array. 

In this case, matching target value is found at the very last 

element of array. 

The average case for linear search with n element(s) 

is: 

𝑇𝑎𝑣𝑔(𝑛)  =  
1+2+3+4..+𝑛

𝑛
=  

1

2
∗(𝑛)∗(𝑛+1)

𝑛
=

𝑛+1

2
  

Linear search Big-O asymptotic time complexity is: 

T(n) = 
𝑛+1

2
≤  2 * n for C = 2, f(n) = n and n≥ 1  

Hence, the Big-O complexity for linear search is 

O(n). 

 

2. Binary Search 

Arrays are sorted with merge sort algorithms before 

binary search algorithm is implemented. 

The average, best, and worst case for merge sort are 

the same because merge sort continuously divides arrays 

into 2 parts, despite array might have been sorted in the 

middle of the process. It then merges all the subarrays in a 

process that involves every element. 

Merge sort recursively divides arrays into half and the 

total operation for this process is log (n). Each subarray is 

then merged in a process that touches every element, and 

this process involves n operation(s). The total operation for 

merge sort is n * log (n). Hence, the time complexity(T(n)) 

for merge sort is n log n. 

After the array is sorted, binary search recursively 

divides arrays into intervals with left and right marker until 

the middle element eventually matches the target GBK 

value or the last element to be proceeded. 

1 =
𝑁

2𝑥
 

2𝑥 = 𝑁 

𝑥 𝑙𝑜𝑔 2 =  𝑙𝑜𝑔 𝑁 

𝑥 =  𝑙𝑜𝑔2 𝑁 

N= array size; x=number of processes 

Hence, the time complexity(T(n)) for binary search is 

log n. 

For the first search, array must be sorted before the 

search hence the time complexity for the first search is 

 Tfirst(n) = Tsort(n) + Tsearch(n) = n log n + log n 

The Big-O asymptotic time complexity for the first 

search is: 

Tfirst(n) = n log n + log n ≤ 2 ∗  (𝑛 𝑙𝑜𝑔 𝑛) for C = 2, 

f(n) = n log n, and n≥ 1 

Hence, the Big-O complexity for the first search is 

O(n log n). 

However, starting the second search, algorithms do 

not perform sorting algorithms. Therefore, the time 

complexity is reduced to T(n) = log n and its Big-O 

complexity is 

Tsecond(n) = log n ≤ 𝑙𝑜𝑔 𝑛 for C = 1, f(n) = log n, and 

n≥ 1 

Hence, the Big-O complexity starting the second 

search is O(log n). 

3. Hash Search 

Elements of array are mapped into a hash table by 

Python dictionary which GBK values are assigned as keys 

and values are assigned True as dummy. GBK value is 

ensured to be unique as each Mandarin character has its 

own GBK encoded value. Python then internally applies its 

hash function to manage key placement and lookup 

efficiency. This process is done n times as it has to map 

every element in the array and assigns them with True; 

hence it has the time complexity(T(n)) of n.  

Search is then performed by looking up whether the 

target GBK value is in the hash table in 1 process. 

Therefore, the time complexity(T(n)) for this process is 1. 

For the first search, elements must be mapped into 

hash table before the hash table lookup, hence the time 

complexity for the first search is 

Tfirst(n) = Tmap(n) + Tlookup(n) = n + 1 

The Big-O asymptotic time complexity for the first 

search is: 

Tfirst(n) = n + 1 ≤ 2 ∗  𝑛 for C = 2, f(n) = n, and n≥ 1 

Hence, the Big-O complexity for the first search is 

O(n). 

However, starting the second search, algorithms do 

not perform mapping algorithms. Therefore, the time 

complexity is reduced to T(n)= 1 and its Big-O 

complexity is 

Tsecond(n) = 1 ≤ 1 for C=1, f(n)= 1, and n≥ 1 

Hence, the Big-O complexity starting the second 

search is O(1). 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

Theoretically the most efficient search method 

starting for the second search determined based on the 

time complexity is : 

Hash Search O(1) > Binary Search O(log n) > Linear Search 

O(n) 

 

 Hash search is theoretically the most efficient search 

method with the Big-O complexity of 1, meaning the time 

needed to complete the computation is similar for every number 

of inputs and does not depend on input size. 

 

B. Empirical Testing Results 

Each input is run with the same Python interpreter. 

 

Mandarin Character Execution Time (s) 

试 0.0000633000163361 

印 0.0001500000362284 

快 0.0000565000227652 

蓝 0.0001567000290379 

火 0.0000839999993332 

茶 0.0001755999983288 

灯 0.0001760000013746 

巧 0.0001110999728553 

我 0.0000062999897636 

爱 0.0000184000236914 
Table 5. Linear Search Testing Execution Time 

 

Mandarin Character Execution Time (s) 

试 0.0048413000185974 

印 0.0000170999555849 

快 0.0000746999867260 

蓝 0.0000155000016093 

火 0.0000185000244528 

茶 0.0000219999928959 

灯 0.0000166000099853 

巧 0.0000147999962792 

我 0.0000171000137925 

爱 0.0000181000214070 
Table 6. Binary Search Testing Execution Time 

 

Mandarin Character Execution Time (s) 

试 0.0006209000130184 

印 0.0002829000004567 

快 0.0002565999748185 

蓝 0.0002490999759175 

火 0.0002980999997817 

茶 0.0003375000087544 

灯 0.0003679000074044 

巧 0.0002389000146650 

我 0.0002282999921590 

爱 0.0003244999679737 
Table 7. Hash Search Testing Execution Time 

Average time for Linear Search: 0.0000997900089715 s 

(99.7 µs) 

Average time for Binary Search: 0.0005055700021330 s 

(505.6 µs) 

Average time for Hash Search: 0.0003204699954949 s 

(320.4 µs)  

 

Empirically the fastest search method is the linear 

search method with average of 99.7 µs, followed by hash 

search with average of 320.4 µs, and binary search with 

average of 505.6 µs. 

Empirical results strengthen the claim that time 

complexity for the first binary search is more complex 

than the second binary search. As O(n log n) is a more 

complex algorithm than O(log n). 

Time taken for the first binary search: 4.84 ms 

Time take for the second binary search: 17µ𝑠  

Hash search complexity for the first search is also 

proven to be more complex than the second search. The 

first search requires additional time to construct the hash 

table (O(n)), while the next searches benefit from constant 

lookups time(O(1)). 

Time taken for the first hash search: 620.9 µ𝑠 

Time taken for the second hash search: 282.9 µ𝑠 
Time taken for the third hash search: 256.6 µ𝑠 

V. CONCLUSION 

 The experimental comparative analysis successfully 
proved the theoretical characteristics of the three search 
methods. Linear search is proven to be consistent with its 
theoretical O(n) complexity as the algorithms’ time 
complexity increases with respect to the input size. Binary 
search time complexity for the first search is O(n log n) 
causing it to be more complex at first, however starting 
from the second search the complexity drops to O(log n), 
making it an efficient search method for large input size. 
Hash search is a very consistent searching method as it is 
not affected with the input size (O(1)), however the first 
search might be more complex as it needs to build the hash 
table which has the complexity of O(n). The characteristic 
of hash complexity is displayed from constant execution 
time starting from the second search. 

 Practically, the performance of each algorithm may 
vary based on input size, input frequency, and processor 
specifications. Therefore, while hash search is ideal for 
handling large-scale input size and frequent lookups, 
binary search offers a good balance between speed and 
setup complexity. Linear search remains reliable for small 
input size. Overall, this article underscores the importance 
of algorithm selection in handling Mandarin character data 
effectively. 

As GBK are able to encode 21,003 characters, the most 
efficient search method to be implemented in Mandarin to 
other languages dictionary software development is hash 
search. With a time complexity of O(1), hash search offers 



Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025 

 

fast and consistent lookup performance regardless of the 
Mandarin character which is being searched. As GBK 
encoded values are also unique, it can be utilized as keys 
in building hash table. 

VI. APPENDIX  

Video Link: https://drive.google.com/file/d/10J-
EFp0Mix4iaG1zlqmICsy1mQ1Vvn0-/view?usp=sharing 

Duration: 32 minutes 42 seconds 

Programs used in Analysis: 
https://github.com/RayapSunggal/13524052-Raynard-
Fausta/tree/main 

VII. ACKNOWLEDGMENT 

The author sincerely thanks God Almighty for 

providing the strength and opportunity to complete this article 

successfully. The author also extends his deep appreciation and 

gratitude to Mr. Arrival Dwi Sentosa, S.Kom., M.T., lecture of 

K02 IF1220 Discrete Mathematics, whose semester-long 

support enabled the smooth completion of this article. The 

author would also like to extend his personal appreciation to 

Wowkie Zhang (阳光彩虹小白马) and to EggPlantEgg (浪子

回头), whose music has accompanied and uplifted the author 

during the preparation of this article 

VIII. REFERENCES 

[1] Awati, Rahul and Peter Loshin. 2025. ASCII (American Standard Code 
for Information Interchange). TechTarget. Retrieved June 16, 2025, from 
https://www.techtarget.com/whatis/definition/ASCII-American-
Standard-Code-for-Information-Interchange 

[2] 计算中心. 2015. GB2312-80编码表(汉字机内码). 成都信息工程大学. 
Retrieved June 16, 2025, from 
http://jszx.cuit.edu.cn/NewsCont.asp?type=1009&id=20566 

[3] 计算中心. 2015. GBK 编码. 成都信息工程大学. Retrieved June 16, 
2025, from 
http://jszx.cuit.edu.cn/NewsCont.asp?bm=00&type=1009&id=20567 

[4] Anubhavgoel1. 2023. Definition, Types, Complexity and Examples of 
Algorithm. GeeksforGeeks. Retrieved June 16, 2025 from 
https://www.geeksforgeeks.org/what-is-an-algorithm-definition-types-
complexity-examples/ 

[5] Krantz, Tom. 2025. What is a brute force attack?. IBM. Retrieved June 
17, 2025 from https://www.ibm.com/think/topics/brute-force-attack  

[6] Munir, Rinaldi. 2025. Kompleksitas algoritma (Bagian 1). Informatika 
STEI ITB. Retrieved June 17, 2025 from 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-
Kompleksitas-Algoritma-Bagian1-2024.pdf  

[7] Munir, Rinaldi. 2025. Kompleksitas algoritma (Bagian 2). Informatika 
STEI ITB. Retrieved June 17, 2025 from 
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-
Kompleksitas-Algoritma-Bagian2-2024.pdf  

[8] Understanding Chinese Characters: the Basics You Need to Know. (n.d.). 
MANDARIN BLUEPRINT. Retrieved June 17, 2025 from 
https://www.mandarinblueprint.com/blog/chinese-
characters/#:~:text=Chinese%20characters%20are%20not%20words,but
%20many%20others%20are%20not 

[9] ASCII，GBK，和 Unicode 的 UTF-8，UTF-16，UTF-32 阐述. (n.d.). 
城 南 花 已 开 . Retrieved June 17, 2025 from 
https://www.cnblogs.com/cnhyk/p/12284020.html  

[10] National Information Technology Standardization Technical Committee 
of China. 1995. Chinese Internal Code Specification (GBK) [Standard 
No. GBK n0278-1995]. China Electronics Standardization Institute. 

[11] Ďurišinová, Martina. 2025. Understanding The Different Types of Search 
Algorithms. Luigi’s Box. Retrieved June 18, 2025 from 
https://www.luigisbox.com/blog/types-of-search-algorithms/ 

[12] Hashing in Data Structure. 2025. GeeksforGeeks. Retrieved June 18, 
2025 from https://www.geeksforgeeks.org/dsa/hashing-data-structure/ 

[13] Merge Sort Algorithm. (n.d.). Progamiz. Retrieved June 18, 2025 from 
https://www.programiz.com/dsa/merge-sort 

[14] Hashing in Data Structure. 2025. GeeksforGeeks. Retrieved June 18, 
2025 from https://www.geeksforgeeks.org/dsa/hashing-data-structure/ 

[15] Dictionaries in Python. 2025. GeeksforGeeks. Retrieved June 18, 2025 
from https://www.geeksforgeeks.org/python/python-dictionary/ 

 

PERNYATAAN 

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini 

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari 

makalah orang lain, dan bukan plagiasi. 

Bandung, 20 Juni 2025 

Raynard Fausta 

              13524052 
 

https://drive.google.com/file/d/10J-EFp0Mix4iaG1zlqmICsy1mQ1Vvn0-/view?usp=sharing
https://drive.google.com/file/d/10J-EFp0Mix4iaG1zlqmICsy1mQ1Vvn0-/view?usp=sharing
https://github.com/RayapSunggal/13524052-Raynard-Fausta/tree/main
https://github.com/RayapSunggal/13524052-Raynard-Fausta/tree/main
https://www.techtarget.com/whatis/definition/ASCII-American-Standard-Code-for-Information-Interchange
https://www.techtarget.com/whatis/definition/ASCII-American-Standard-Code-for-Information-Interchange
http://jszx.cuit.edu.cn/NewsCont.asp?type=1009&id=20566
http://jszx.cuit.edu.cn/NewsCont.asp?bm=00&type=1009&id=20567
https://www.geeksforgeeks.org/what-is-an-algorithm-definition-types-complexity-examples/
https://www.geeksforgeeks.org/what-is-an-algorithm-definition-types-complexity-examples/
https://www.ibm.com/think/topics/brute-force-attack
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/25-Kompleksitas-Algoritma-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/26-Kompleksitas-Algoritma-Bagian2-2024.pdf
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.mandarinblueprint.com/blog/chinese-characters/#:~:text=Chinese%20characters%20are%20not%20words,but%20many%20others%20are%20not
https://www.cnblogs.com/cnhyk/p/12284020.html
https://www.luigisbox.com/blog/types-of-search-algorithms/
https://www.geeksforgeeks.org/dsa/hashing-data-structure/
https://www.programiz.com/dsa/merge-sort
https://www.geeksforgeeks.org/dsa/hashing-data-structure/
https://www.geeksforgeeks.org/python/python-dictionary/

